Differential cortical activation of the striatal direct and indirect pathway cells: reconciling the anatomical and optogenetic results by using a computational method.

نویسنده

  • Kenji Morita
چکیده

The corticostriatal system is considered to be crucially involved in learning and action selection. Anatomical studies have shown that two types of corticostriatal neurons, intratelencephalic (IT) and pyramidal tract (PT) cells, preferentially project to dopamine D1 or D2 receptor-expressing striatal projection neurons, respectively. In contrast, an optogenetic study has shown that stimulation of IT axons evokes comparable responses in D1 and D2 cells and that stimulation of PT axons evokes larger responses in D1 cells. Since the optogenetic study applied brief stimulation only, however, the overall impacts of repetitive inputs remain unclear. Moreover, the apparent contradiction between the anatomical and optogenetic results remains to be resolved. I addressed these issues by using a computational approach. Specifically, I constructed a model of striatal response to cortical inputs, with parameters regarding short-term synaptic plasticity and anatomical connection strength for each connection type. Under the constraint of the optogenetic results, I then explored the parameters that best explain the previously reported paired-pulse ratio of response in D1 and D2 cells to cortical and intrastriatal stimulations, which presumably recruit different compositions of IT and PT fibers. The results indicate that 1) IT→D1 and PT→D2 connections are anatomically stronger than IT→D2 and PT→D1 connections, respectively, consistent with the previous findings, and that 2) IT→D1 and PT→D2 synapses entail short-term facilitation, whereas IT→D2 and PT→D1 synapses would basically show depression, and thereby 3) repetitive IT or PT inputs have larger overall impacts on D1 or D2 cells, respectively, supporting a recently proposed hypothesis on the roles of corticostriatal circuits in reinforcement learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of basal ganglia output by direct and indirect pathway projection neurons.

The direct and indirect efferent pathways from striatum ultimately reconverge to influence basal ganglia output nuclei, which in turn regulate behavior via thalamocortical and brainstem motor circuits. However, the distinct contributions of these two efferent pathways in shaping basal ganglia output are not well understood. We investigated these processes using selective optogenetic control of ...

متن کامل

The Role of Wnt Signaling Pathway on the Expression of TGFβ 1 and TGFβ 2 in Cultured Rat Cortical Astrocytes

Introduction: Astrocytes, the most abundant glia in the central nervous system, modulate neuronal survival and function. Astrocytic functions are mediated by synthesis and secretion of wide ranges of polypeptides through mechanism (s) poorly understood. Among these, TGFβs are synthesized and released by the astrocytes. In this study, the involvement of Wnt signaling pathway on the synthesi...

متن کامل

Striatal indirect pathway controls the maintenance and retrieval but not encoding of spatial working memory via striatopallidal output projections

Spatial working memory (SWM) is fundamental to cognition by caching behaviorally relevant cues on a timescale of seconds and by tapping into several executive processes including encoding, maintenance and retrieval of information for adaptive behavioral response. The striatum plays a critical role in gating WM representations, but the specific contribution of the striatal indirect pathway to WM...

متن کامل

Dopamine D2 Receptors Regulate the Anatomical and Functional Balance of Basal Ganglia Circuitry

Structural plasticity in the adult brain is essential for adaptive behavior. We have found a remarkable anatomical plasticity in the basal ganglia of adult mice that is regulated by dopamine D2 receptors (D2Rs). By modulating neuronal excitability, striatal D2Rs bidirectionally control the density of direct pathway collaterals in the globus pallidus that bridge the direct pathway with the funct...

متن کامل

Differential Innervation of Direct- and Indirect-Pathway Striatal Projection Neurons

The striatum integrates information from multiple brain regions to shape motor learning. The two major projection cell types in striatum target different downstream basal ganglia targets and have opposing effects on motivated behavior, yet differential innervation of these neuronal subtypes is not well understood. To examine whether input specificity provides a substrate for information segrega...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 112 1  شماره 

صفحات  -

تاریخ انتشار 2014